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This paper  is concerned with the calculation of the memory function and 
derivation of a kinetic equation for one-body phase space correlation func- 
tions. The theory uses a one-body additive projection operator  and a 
division of the Liouville operator  with an unperturbed par t  that  describes 
dressed particles. Binary collisions are neglected, for the theory aims at 
describing the screening and backflow effects of a type contained in the 
plasma kinetic theory of Balescu and Lenard. We obtain an explicit kinetic 
equation which is an improvement  of these theories for the plasma case, and 
involves the exact equilibrium pair  and triplet distributions. The equation 
also describes systems with strong short-range forces and shows how the 
screening effects occur in this case as well. The unifying function is the direct 
correlation function. The theory is meant  to provide understanding for a 
more complete theory of fluids where a proper  account  is given of close 
collisions. 
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1.  I N T R O D U C T I O N  

T h e  p r e s e n t  w o r k  is c o n c e r n e d  w i t h  t h e  c a l c u l a t i o n  o f  t i m e - d e p e n d e n t  co r -  

r e l a t i o n  f u n c t i o n s  in  t h e  l i n e a r  r e s p o n s e  d o m a i n .  T h e  t i m e  c o r r e l a t i o n s  a r e  o f  

t h e  f o r m  

-~ ( d r  q ) N * ( p [ k l O ) N ( p ' [ k l t  ) - ( N ( p l k t O ) l N ( p ' l k [ t ) ~  C ( p k [ p ' k )  (1) 
J 

Work  supported by National  Science Foundat ion,  Gran t  No. G H  35691. 

1 Depar tment  of Physics, Brandeis University, Waltham,  Massachusetts.  

503  

�9 1974 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publica- 
tion may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, 
mechanical, photocopying, microfilming, recording, or otherwise, without written permission of the publisher. 



504 Eugene P. Gross 

Here 

Nr(p[kl t) = ~ 8(p~(t) - p) exp[ikq~(t)] (2) 
cr 

is the one-body additive phase space distribution, q5 is the Gibbs equilibrium 
distribution and an inner product in phase space is defined as indicated. 

There has been a vast amount of study of this problem in recent years. 2 
In addition to the new results presented here, we point out some not so 
obvious connnections between some of the theories. We start with an abstract 
operator formulation of the standard Mori memory function formalism. <3) 
This formalism involves the choice of a projection operator P. It may be 
chosen so as to project out a limited number of phase space functions of a 
given wave vector k, as, for example, the hydrodynamic states used in the 
theories of Kadanoff  and Swift (~) and Kawasaki. <5~ Alternatively, as was 
shown by Akcasu and Duderstadt, (6> P may be taken to be the entire space of 
one-body additive functions. The projection operator can still be exhibited in 
closed form. In any case, the formalism for calculating correlation functions 
involves a "s ta t ic"  part PLP, where L is the Liouville operator. This is Mori's 
frequency matrix. This term involves the total Liouville operator and is 
independent of any breakup of L into parts. If  P is chosen to project onto the 
space spanned by the five hydrodynamic states for given wave vector k, one is 
concerned with diagonalizing the Liouville operator in this finite basis (cf. 
Zwanzig and Nossab 7>. This gives a microscopic formulation of reversible, 
perfect fluid theory. If, on the other hand, one takes P to be constructed from 
the infinite set of one-body additive functions, one finds the Zwanzig variant 
of the linearized Vlasov equation. 

In both cases the other part of the formalism, involving the memory 
function, has been treated by simply setting the memory function equal to 
zero. 

At this point we briefly set down the equations of the memory operator 
formalism. We work with the Laplace transform of the correlation function 

C(pklp'k) = (N(p[k)[a[N(p' lk))  (3) 

where the resolvent operator G is 

G ~ - ( s + L ) - i  (4) 

The resolvent operator applied to the initial value of ~(~'[klt), i.e., 
N(p'lkl t = 0) --- N(p']k), yields the Laplace transform of/V(p' Ikl t). 

We are therefore concerned with the calculation of PGP, where P is 
some projection operator. From 

(s + c ) ~  = 1 (5) 

z See, e.g., Berne. (1~ For an extensive set of references see Mazenko. (15~ Also see Lebowitz 
et al. (2> 
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we obtain by applying first P, then Q, 

(s + PLP)PG + PLQG = P, (s + QLQ)QG + QLPG = Q (6) 

where 
Q = 1 - P ,  p2 = p  (7) 

Each equation breaks into two parts when P and Q are applied on the 
right-hand side. From the second equation, the P operator yields 

(s + QLQ)QGP = - (QLP)PGP (8) 

Inserting this into the equation 

(s + PLP)PGP + PLQ.  QGP = p2 = p (9) 

we find 

(s + PLP + M)(PGP) = P (10) 

where M is the memory operator 

M = - P L Q ( s  + Q L Q ) - I Q L P  (11) 

In this formalism the theories already mentioned (perfect fluid, modified 
Vlasov) correspond to different choices of P and total neglect of the memory 
function. The two-body additive approximation of Gross (~ can be charac- 
terized as the choice of P as a projection onto the class of two-body additive 
functions in phase space. The memory function is entirely neglected. A detailed 
analysis of this operator is found in the paper by Bergeron et alJ ~ under the 
title, "Inversion Problem." Of course, when P consists of a finite number of 
functions (for each wave vector), one obtains reversible equations, i.e., a 
finite number of oscillating terms for the correlation function. With the one- 
body additive choice, one obtains the analog of Landau damping, while with 
the two-body additive projection operator one has Boltzmann-Enskog and 
Balescu-Lenard (1~ type kinetic equations for the correlation functions. Thus, 
one approach to a systematic theory can be characterized by the injunction, 
Enlarge the projection operator space and neglect the residual memory 
operator. Another approach is to try to estimate the memory function 
intuitively (e.g., Kadanoffand Swift) or to try to calculate by some systematic 
scheme such as perturbation theory. The approach is similar to the mass 
operator approach of quantum field theory. Thus Akcasu and Duderstadt 
consider the case that P is the one-body additive operator and the memory 
function is approximated as 

M ~ - P L Q ( s  + QLo~ 

Here Lo ~ is the free streaming part of the Liouville operator and Lz ~ is the 
potential energy part. Since Lo ~ is a one-body additive operator, Lo~ is a 
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one-body additive function and QLo~ = 0 (PLo~ is not zero). This is an 
attractive feature of P. The resulting theory is then that of Forster and 
Martin, (11~ which is a non-Markovian extension of the weak coupling Fokker- 
Planck kinetic equation for the correlation function. 

In contrast to the "static" term PLP, which depends only on P, the 
approximation to the memory function is sensitive to the division of L into 
an Lo and an L1. The main calculation of this paper involves the computation 
of the memory function in the manner just outlined but with L0 chosen to be 
a different one-body additive operator in which a self-consistent field term, 
depending on the equilibrium direct correlation function, is added to the 
free streaming operator. The residual operator L1 has the property that 
PLIP = 0, i.e., 

<N(Plk)lZ~lN(P'lk)> = 0 

for all values of the arguments. 
The theory that results when one performs this simple step of working 

with "dressed" propagators has some attractive features. When applied to 
the Coulomb case, with equilibrium correlation functions estimated in the 
Debye-Hiickel approximation, one obtains the standard linearized plasma 
theory of Balescu, Lenard, and Guernsey (see Ref. 12) together with higher 
order corrections. The Fokker-Planck-like equations have screening func- 
tions that avoid long-wavelength divergences. Of course, even if one is in a 
physical domain where the plasma parameter, i.e., the reciprocal of number 
of electrons in a Debye sphere, is small, the Debye-Hiickel approximation 
fails at short distance. The present theory is free of divergences arising from 
this fact since we work with the exact equilibrium correlation functions. The 
physical analysis of these screening-type terms in terms o f"  dressed particles," 
"deformed polarization clouds," "hydrodynamic backflow" is well known 
in plasma physics. (1~ Since our theory also applies to neutral systems with 
short-range forces, we have the analogous microscopic description of effects 
that enter in the classical hydrodynamics of the interaction of macroscopic 
bodies in a fluid. 

Clearly, the fact that the theory does not lead to a nonsensical descrip- 
tion of short-wave interactions does not mean that it leads to a correct 
description. Indeed, we know that the description is not correct, since we 
have neglected the direct short-range binary interactions that lead to the 
Boltzmann-Enskog equation. For the charged particle case, the direct 
Coulomb interaction is usually dropped on the grounds that it is of higher 
order in the plasma parameter. It is this neglect that makes possible the con- 
struction of an explicit equation obeyed by the singlet distribution function, 
e.g., Guernsey's (~z) application of singular integral equation theory. For 
neutral systems with short-range forces one can say that the Forster-Martin 
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theory is superior to the earlier Brout-Prigogine (see, e.g., Ref. 13) weak 
coupling theory in the same manner. The Forster-Martin theory involves 
equilibrium correlation functions in a way that the theory is meaningful even 
for very strong short-range forces. Yet it is not correct since no attempt was 
made to treat binary collisions correctly. 

One knows that theories based on a two-body additive projection 
operator do give the Boltzmann-Enskog limit. But of course the theories are 
much more complicated. The point of the present paper is to show that for 
a given projection operator (in this case the one-body additive operator) 
significant progress can be made in estimating the memory operator by an 
appropriate division of the Liouville operator. The calculations are presented 
in Sections 3-5. 

Section 2 is devoted to the analysis of an interesting trap that one can fall 
into when working with memory operators. The author fell into the trap 
while analyzing a very interesting recent paper by Akcasu. (14~ We hope the 
analysis will prevent some others from having the same experience. 

2. I N T E G R A L  E Q U A T I O N S  FOR THE M E M O R Y  F U N C T I O N  

The exact expression for the memory operator involves the resolvent 
(s + Q L Q ) - I ,  i.e., the projection of the Liouville operator in the Q space. It 
is inconvenient to calculate with such propagators, Following Mori and 
Akcasu, ( ~  one can use the algebraic identity 

(s + QL) -~ = G + GPL(s + QL) -1, G = .(s + L)  -1 (12) 

to form an equation for the memory operator. To simplify the argument, let 
us take the division L = Lo + L1, such that Lo is one-body additive. We take 
P to be the one-body projection operator. Then QLoP = 0 and 

M = q +  A . M  (13) 

Here 

q = - P L G Q L 1 P  (14) 

A = P L G P  (15) 

The important point is that q and A contain the normal resolvent 
operator G. I f  one imagines that suitable approximations are made for q and 
A, we have an integral equation for the memory function. The formal 
solution is 

M = (1 - A)- lq  (16) 

However, there is an algebraic relation connecting q and A. Using 

G = Go - 6L~Co, Go = (s + Lo)-* (17) 
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we find 

A = A ~ - A . A  ~ + qPGoP + PLoGoP, A ~ = PL1GoP (18) 

Go and A ~ can be treated as known quantities. 
I t  is now tempting to try to generate the entire theory from q, the cor- 

relation function of  " r a n d o m  force," We can compute A by solving the in- 
tegral equation formally 

A = {h ~ + PLoGoP + qPGoP}(1 + A~ -1 (19) 

Inserting this into the integral equation for the memory function, we find the 
exact algebraic result 

M = (1 + h~ - PLoGoP - qPGoP]-lq (20) 

With an approximation to q we find corrections to the memory function 
that depend on higher powers of q. However, the point made here is that this 
is devoid of content. The memory  function integral equation just "undoes"  
the whole memory function approach. I t  is easiest to see this in the spatially 
homogeneous case. Then P only contains the zero-wavevector, one-body 
additive functions of  velocity. We have 

PGoP = l/s, PLP = 0 A ~ = 0 (21) 

Thus, Eq. (20) gives for the memory  function 

i = [1 - q/s]-~q (22) 

The equation for the correlation function is 

[s + (1 - q/s)-lq]PGP = e (23) 

These results depend on exact algebraic manipulations and do not depend on 
using the exact q or some approximate estimate for q. We see that for the 
spatially homogeneous problem 

PGP = (l/s) - (l/s~)q (24) 

This is of course an exact identity that can be established directly from 
the definition of q. The significant point is that even if we use an approxima- 
tion for q but solve the integral equation for the memory function exactly, we 
arrive at an approximation to PGP of the above form. The structure of PGP 
in the complex s plane thus mirrors precisely that assumed in the (usually 
crude) estimate of q. This is the sense in which one has " u n d o n e "  the memory 
function. 

I t  is, however, perfectly valid to use the integral equation for the memory 
function as a calculational aid, as is done in Akcasu's  paper. I f  one believes 
that it is adequate to have the memory function to some order in the coupling 
constant or density (for all values of  s and k), it may be easier to evaluate q, 
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since it contains the ordinary resolvent G. One can then calculate the memory 
operator to the requisite accuracy. 

We now complete the above argument for the general, spatially inhomo- 
geneous case in a way that is germane to the rest of this paper. P is the one- 
body additive projection operator and PL1P = 0. Then A ~ = 0, 

M = {(s - q)PGoP}-lq 

This leads to 

{s + PLoP + M}PGP = P 

and 

(25) 

(26) 

PGP = (1 - q/s)(PGoP) (27) 

In the light of the above considerations we will simply approximate M by 
q, without solving the integral equation, and justify the results as in a coupling 
constant expansion. To improve the theory, we need to enlarge the space 
spanned by P, or to find a systematic approach to M. 

The most systematic approach to memory functions is the impressive 
set of papers by Mazenko. (15~ The relation between different recent approaches 
has been clarified by the work of Boley (16~ on extending the present author's 
approach to nth approximation. 

We can, however, easily show that the present work is in an approxima- 
tion that is intermediate between the one-body additive and two-body addi- 
tive approximations. To translate the two-body additive approximation into 
the memory function language, we let Q be a projection operator constructed 
from two-body additive functions but made orthogonal to the one-body 
projector P. The rest of the function space is neglected. Then QLP consists of 
at most two-body additive functions. The propagator Is + QLQ]- ~ involves 
the matrix elements in the two-body space QLQ. We will replace this by 
[s + QLo Q] - 1 with a suitable Lo. The Lo describes the propagation of inde- 
pendent "dressed" particles in the complete two-body additive space P + Q. 
Thus Is + QLoQ]-I represents such independent dressed particles but sub- 
ject to an orthogonality constraint that arises from the particle nature in- 
volved in excitations. What is neglected is the explicit binary collisions that 
are contained in the full QLQ, i.e., in the two-body additive approximation. 
This kind of approximation is familiar in plasma physics. 

3, D I V I S I O N  OF THE LIOUVILLE O P E R A T O R  

We first set down the formalism that will be used in the remainder of this 
paper. The Liouville operator is 

N 

m eq, ep--  = L~176 + LI~ (28) 
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The matrix elements of L between one-body additive functions are 

(N(p'lk)lL[N(plk)) = iOt.p/m)r $(p - p') (29) 

r = ( O/2rrm) alz exp( -  Op2/2m) 

In addition, the separate parts have matrix elements 

<N(p'lk)[Lo~ = i(k.p/m)r 8(p - p') + r(k)r (30) 

(N(p'Ik) ILI~ N(Plk)) = - i (k.p[m)r (k)r 

Here 
/ -  

r(k) ---- | r ~ e'k(%-% ) d r  (31) 
J cr162 

is the Fourier transform of the pair correlation function. 
The one-body projection operator can be written as 

e = f f ~ ]N(p]k)> d3p Z(p, klp',k) d3p' (N(p'lk)[ (32) 

with 

Since 

NZ(p, kip', k) = r 8(p - p') - {r(k)[[N + r(k)]} (33) 

(N(plk)lN(p'Ik)} = Nr - p') + [r(k)/N]r (34) 

one checks that 

PlN(p[k)} = [N(Plk)} 

The desired correlation function is 

C(P, kIP', k) = (N(plk)IPGP[N(p'Ik)) = (PIPGPIP ') =- C(pIP') (35) 

Since the wave vector k is a parameter, we use the simpler notation where 
only the momentum part is indicated. We find 

sC~[,') + f f (p[L + ~r(s)[p") dap " Z(p"[pl)C(pl[p') dapl 

= (N(plk)lN(p'lk)) (36) 

This is the matrix realization of the basic equation (10). We note that the 
second part of the projection operator is a constant and involves a contribu- 
tion of (N(plk)lMIp(k)) in the memory part of the equation. However, 
L~~ = 0. The memory operator contains the factor QL~~ on the right- 
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hand side. This remains true in all of our approximations to the memory 
operator. We can therefore rewrite the equation in the form 

f dapl + (p[)~[p~) - ~  C(p~[p') = (N(p[k)[N(P'lk)) (37) 

The "static" part of the equation corresponds to the Zwanzig modification 
of the linearized Vlasov equation. The Forster-Martin weak coupling theory 
consists in taking 

• ~ v  = _ p L o a [ s  + QLoOO]-~QLlOp (38) 

~r stands for the free streaming memory function. We find for spatially 
homogeneous processes 

(N(p'[0) I.~F[N(P'I0)) 

1 O 8 V(k)  
- OOpuap ~ ,  Zk~k. - - ~  r(k) 

where 

~(p,) ]r 
x a(p - p ' )B-k(p)  - s + ( i k / m ) ( p  - p') (39) 

( ,  

, ~ ( p )  = j a3p , ~ (p , ) [ s  + ( i k / m ) ( p  - p , ) ] - i  

As noted earlier, it differs from the Brout-Prigogine weak coupling 
memory function in that r(k) is not replaced by its weak coupling equilibrium 
value - poOV(k)(N - 1). 

We now discuss the different splitting of the Liouville operator that is 
used in this paper. It is convenient to use a functional notation. The sym- 
metric N-particle distribution function if(q1 .... , pN[s) is taken to depend on 
the particle variables through their appearance in the functions N(p[k). F is 
a superposition of products of the N(p~lk~) .-. N(pN[kN) with different values 
of Pl, -.., PN, kl, ..., kN. 

Then 

f ~ p~ ~' ~N(p]k) 3 - Lo~ ~=z m ~  Oq~ ON(plk) dapF 

f ik.p 3ff = d*p ~, ~ N(p[k) aN-~]k) (40) 
k 
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We also have 

-if LlOff = --~ d3 p ~ k, iT(k,)p(k, ) 0N(p[k - k') 8F 
~,,k ~p 3N(plk) (41) 

p(k) = N(pl lk)  d pl (42) 

The standard Vlasov random phase term is obtained when one selects the 
k' = k term from L1 ~ and replaces ~N(p[O)/~p by N ~r Our procedure 
is to isolate a term of the same form. Thus we write 

f I ~  "~ kCF(k) N~r } ~p 3N(plk ) Lo = d3p ~ N(p[k) - i p(k) (43) 

L~ = L - Lo 

The additional term in Lo is one-body additive, i.e., linear in the N(p~lk) 
through p(k). It is in fact an integral operator in phase space. We will choose 

-r(k)  1 
N + r(k) 0 (44) 

i.e., the Fourier transform of the direct correlation function. The matrix 
element (N(plk)ILolN(p'[k)) gives the Zwanzig term in the integral equation 
for the correlation function. We will refer to the propagator (s + Lo)- ~ as a 
"dressed propagator." The remaining part of the Liouville operator is 

f kW(k) N ~r 3 p(k) (45) 
s 0p 3N(p[k) /c 

It has the property that (N(plk)[L~IN(p'lk)~ = 0. This follows from the 
equilibrium chain for the distribution functions. Indeed, in the functional 
language one fixes ~P(k) by adding to L~ ~ a term linear in the N(p[k) and in the 
functional derivatives. One requires the vanishing of the matrix elements of 
L~ in the one-body space. 

The operator L0 has a very important property which can be termed 
"additivity of excitations." If  r and r are eigenfunctions of Lo with 
eigenvalues ,(k~) and E(k2), the product r162 is an eigenfunction with eigen- 
value *(kx) + *(k2). This means that (s + Lo)- ~ creates dressed excitations in 
the multiparticle Q space. This is a crucial property that depends on having a 
differential operator in L. One can easily construct an L~ by writing L~ = 
LI ~ - PL~~ and Lo = Lo ~ + PL~~ with the property PL1P = 0. However, 
the additional (integral) operator acts only in the P space and (s + Lo)- ~ is 
only a free streaming propagator in Q space. 

Our problem is now well formulated. We will calculate the memory 
function in the approximation 

<p[M(s)[p') = -<a(plk)lL~~ + QLoQ)-IQL~~ (46) 
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4. EVALUATION OF M E M O R Y  FUNCTION FOR DRESSED 
PARTICLES 

To evaluate _/~(s), note that 

Q(s + QLo Q)- ~ Q = Q{(s + Lo)-I + (s + Lo)- zPLo(s + QLo)- 1} Q (47) 

Since Q(s + Lo)-~P = O, QLP = QLI~ we have 

-M(s) ,~ -PLQ(s  + Lo)-IQLP (48) 

It is easier to calculate directly in the time domain, 

1171(t) = - P L Q e -  LotLI~ (49) 

We are concerned with the matrix elements 

(p ' lM(t)[p)  = - ( N ( p ' l k )  lLQe-L0%l~ 

= (Ll~ Qe-LotL~~ (50) 

where the last equation is a consequence of L~b = 0. Thus the memory 
function starts as second order in the coupling constant when t = 0. 

We now have 

- i  ~ ~k~lT(kl)[p(kl)N(plk2)), k 2 = k - k~ (51) L~~ = ~ O--p 

We will show that 

e-LotN(p~lk~)N(p[k2)) = .f . f  f'(PllP31kl)r'(P[P'I k2) 

• [N(p3lkl)N(pz[k2)) d p~ d p~ (52) 

We will exhibit the form of  the time-dependent f' shortly. The memory func- 
tion matrix elements are 

~N(p'lk)]371(t)[U(plk)) . . . .  

Here 

i [. 
kl V(kl) J f2 0p Z /~r(k,[p~)~(k2[ptp2) 

• K(p'p~p21kk~k2)d3pl d3p2 (53) 

/I(k[p) = J l?(klylp ) d3y (54) 

The kernel K is the matrix element of PLQ. Thus 

K(p'plp2lkklk2) = (N(p'[k)ILQ[N(pllkl)N(.p2]k~)) (55) 

To calculate ~, note that the bracket notation is inessential for functions 
to the right of operators. Then 

e- Zd N (pl ] k l )N (p21k2) = ~(pllkl)N(p2]k2) (56) 
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where 

N(plk) = e-LotN(Plk)e'~o' (57) 

and eLo t. 1 = 1. (We use the caret to denote time dependence of the quantity 
involved.) ~(plk)  is computed from the equation 

a~/at = - [Lo, ~1 (58) 

involving the commutator of L0 and ~/. This yields 

dlV ikCF k N e4(P) 
-d/ (Plk) --- - ik m "p N(plk) - --if- ( ) ~ p(k) (59) 

This is a modified Vlasov equation, which is to be solved with the con- 
dition that ~(p]k) at t = 0 equals N(plk). The solution for ~(plk)  is given in 
terms of its Laplace transform ~V(p[k[s). It is 

N(p[k[s) = (s + i ~ ) - l {  N(plk) - ikcFT (k) N ~(p)~p 

1 f N(p'lk) ) 
• ~ s + (ik.p'/m) d3p' (60) 

ik~(k)  f e f (x  ) 1 
A(kls ) = 1 + "----d--- N _  ~x s + (ik.x/m) dax (61) 

Everything is dependent on the single time-dependent function ~(kIp),  

1 ~ e st 1 
/1(kiP) -- 2"~=i ~ A(k[s) s + (ik.p/m) ds (62) 

Using a partial fraction decomposition in the solution for R(plkls), we obtain 

 (klplp') = - p ' ) e x p ( - i k . p t / m )  + - (klpIp') (63) 

ikff'(k) N O~(p)/~(klp' ) - / 1 ( k i p  ) (64) 
A(klplp') = f~ ~p (ik/m)(p - p') 

To complete the calculation of the memory function, we must evaluate 
the kernel K. For k = O, the calculation is simple and we find 

K(p'plp2[0, kl, -k~) = <N(p~lO)lLQ[N(p~[k~)N(p2[-kl)> 

= ik~r(kx)r [8(p' - p~) - $(p' - P2)] 
(65) 

This involves only the equilibrium pair correlation function. For k # 0, the 
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calculation is slightly more involved, and the result also involves the triplet 
correlation function. 

r3(k~[k2[-(k~ + k2)) - f r dr 
~ r 1 6 2  

exp[i(klq~ + k2q~ - (k~ + kz).q,] 

(66) 

We find, with k = kl + k2 

K(p'pzp2Ikkzk2) 

= - i  ~ [ks (k1)  ~(p' - pl)  + k s (k~ )  ~(p' - P2)] 

ik 41r ar [Nra(k~Jk2]-k) - r(k){r(kl) + r(k2)}] (67) 
0 N + r ( k )  ep' 

With these results one obtains the memory function for dressed particles. 
We use the notation 

](kl) = f ~(k~]pl)r d3pz (68) 

](k21p) -= f P(k2]p[p2)r d3p2 (69) 

Then 

(N(p'lk) i~l~l(t)lN(plk)) 

1 0 N'klV--(kl) 
- 0 ~p z_, Q Op {k~r(k~)f(kl)f'(k2]p[p')6(p') 

+ k2r(k2)]YI(k~[p')JO~21p)~(P')} 

1 k 8~(p') 0 ~ kl ~_kl) ](kl)J(k21p) 
+ O N + r  (k) ~p' ap 

x {Nra(k~lk~l-k) - r(k)[r(k~) + r(k2)]} (70) 

To conclude this section, we note that our evaluation of the memory 
function in the time domain is similar to Dupree's approach (17) to plasmas, 
where, however, we do not make an adiabatic assumption. The calculation 
can also be carried out in the Laplace transform domain using Guernsey's 
application of the theory of singular integral equations. The time domain 
approach is more direct and involves less sophisticated mathematics. 
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5. KINETIC EQUATIONS 

5.1. Spatially Homogeneous Processes 

Introduce the correlation function 

/)o(plp') -- f Zo(plP") dap " Co(P"lP') (71) 

The zero subscript indicates that quantities are for zero wave vector. Given 
/3o, we can easily find fro. The relation is 

Co(pip') = N$(p){/)o(plp') + ( N -  1)fr (72) 

The equation for / )o  is 

1 /. 
SDo(p'lp) + N----~-~J <P'IM~ dap'/3o(P"IP) = 8(p - p') (73) 

Using the results already obtained, we have. in the time domain. 

(p'lh~Colp) = ~ r(k)V(k) k.k~ ~ 0 

x ( r  f ' ( -k ,p ly) r  d3y - [ (k)f ' ( -k lp ,p ' ) ]  } 

(74) 

We have P(klplp' ) = 8(p - p ' )exp(- ikpt /m)  + •(klplp' ) with -~ propor- 
tional to P(k). 

It is important to separate the delta function part of P; we introduce 

-Mo(t) = -/17100(0 + J~o'(t) (75) 

where Mo' is the same as _~o, with f~ replaced by A_, leaving the functions/1 
and [ unaltered. We now define 

Gu~(P'IP) = ~ [r(k)/Of2]ff(k)k.k~H(k]p') exp(ikpt/m) (76) 

= G.~(ylp )r d3y (77) R . ~ ( p  ) " ' 

G.~(P'IP) and/],,(p') are the Laplace transforms of these functions. We then 
have 

a a , ~ , 
= , p )Ru~(p )]} (78) (p'13~ro~ ~p. ~p~ {qS(p )[G~(p IP) - 8(p - ' ~ ' 



Memory Function for Dressed Particles 517 

The equation for the correlation function is 

S/)o(P']p) + N~b(p')bp,' q~(P')-Ru~(P') ~ (P']P) 

1 0 [ f -  , ,, 0 /3o . , ,p) ]  

+ N ~  <p'[M'(s)[p"> d3p "/~o(P"IP) = 3(p' - p) (79) 

The first term has differential operators that arise from the delta function 
in ~Q0. The memory function ~f'(s) has an extra factor ~F(k) as compared 
with ~r176 Thus it is of higher order in the plasma parameter for Coulomb 
systems and of higher order in the density for systems with short-range forces. 

Let us now compare the memory function M~ with the weak coupling 
memory function of Section 3. We first compare the terms involving the delta 
functions. The key factor is/~k(P) for the weak coupling theory. It is to be 
compared with 

Now 

fo ~ [exp(- st ) ff (kl) exp(iklp' t/m) dt 

' f es, E(kls) f daP (80) ](k) = ~ A'~'-~)' s + (ikp/m) 

Thus if we neglect screening effects and replace A by unity, we find 

](k) -+ f [exp(-ik~t/m)]~(~) d3~. Inserting this expression, we find precisely 

the weak coupling Bk(P). 
The other term in the weak coupling memory function involves the 

structure {s + i [ k ( p ' -  p)/m]} -1. It arises again when one makes the 
approximation of neglecting the screening so that the function 

/-)(kip ) ~ exp(-  ikpt/m) 

For long-range forces, the inclusion of the factor A(kl Is) is essential to 
avoid long-wavelength divergences. When the pair distribution r(k) is 
evaluated in the Debye-Htickel approximation, the screening is the standard 
plasma function that occurs in the Balescu-Lenard-Guernsey treatment. 
The only difference is that the presence of the exact r(k) in the memory 
operator _h~f~~ also yields a sensible behavior at short distances. The addi- 
tional contributions to the memory operator represented by/Q(1)(t) of course 
give additional terms not contained in either the usual weak coupling or 
plasma theories. 
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In a sense the usual plasma theory is richer in structure than the weak 
coupling theory or theory for gases with strong short-range forces. It includes 
screening and "backflow" effects in the description of the collisions between 
a pair of particles. These effects are also important in macroscopic hydro- 
dynamics when one studies the effective interaction between two macroscopic 
bodies moving in the fluid. One expects that there is a residue that persists 
even when the two bodies are of atomic size. The theory that has been 
presented yields a description of these effects. 

Of course, as mentioned in the introduction, we do not have a really 
proper theory of liquids or even of low-density gases. No attempt has been 
made to provide a proper account of the binary collisions between bare 
particles. 

5.2. Spatial ly Inhomogeneous Processes 

We now set down the kinetic equation for nonzero wave vector correla- 
tion functions. Introduce 

/5(pk[p'k) ~- f Z(pk[p~k) dSpl (7(p~klp'k) (81) 

Then 

C(pklp'k) = Nr + r(k)r r ) dap, (82) 

We will not write the dependence on k explicitly in those cases where this does 
not lead to confusion. 

The equation obeyed by D is 

r(k) f ik.p" da . 
s + ik-Pm/)(PlP') U + r J  m io D(p"[p') 

,f + ~ (p[M(s)[p"} d3p " B@"[p') -- a ( ~  - p ' )  ( 8 3 )  

Here we have simplified the equation by using the fact that 

f d3p2 [k))  = (84) (N(p2[k) IM(s)IN(p" 0 

We must again pay special attention to the delta function contribution of P. 
Let 

(N(p, lk)l)91o(t)lN(plk))= a a - p )R.~(k]p)4,(p ) Op. apv' [3(p ' " 

t ~ t 

- r162 )G.~(kIP IP)] 
g .  ar a 

N + r(k) Opt' ?p~ [~(klp)r (85) 
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Here 

Guv(klp'lP) = - ~ (kluklv/0~2) V(kl)r(k2)fI(kl IP') exp( -  ik2pt/m) (86) 
kz 

k~v(Ulp) = [exp(-ik.pt/m)]k~v(p), k~ + k2 = k (87) 

~'~(kJp) = ~ (kl~/OQ) V(k~)iO~) exp(ik2pt/m) 
lcx 

• {Ur3(klJk2[-k) - r(k)[r(kl) + r(k2)]} (88) 

The residual part of the memory operator 2tT~x~(t) is defined as Eq. (70) with 
P(k2IpIp') replaced by A(k21p[p') and )9(k2[p) replaced by 

f A(k21p[p2),k2 dSp2 

The complete kinetic equation for inhomogeneous processes follows by 
inserting the Laplace transforms of the memory function, which we have 
found in the time domain, into Eq. (83). Again, it is easy to recover standard 
weak coupling and plasma kinetic equations by making further approxima- 
tions. 

6. S U M M A R Y  

It is not our intention here to make a deeper study of the kinetic equa- 
tions arrived at in the present paper. It is easy to write moreaccurate kinetic 
equations using, for example, the two- or three-body additive approximation 
of the present author or Mazenko's truncation scheme. The price one must 
pay for accuracy is a much more complicated mathematical structure. I f  one 
is to have an understandable unified theory of fluids, the more accurate 
theories have to be rearranged and analyzed into component features. Our 
goal has been to show how the very important screening effects that were 
first given a clear mathematical expression in plasma physics can be embedded 
in a unified theory of fluids. The use of projection operators and a judicious 
choice of an "unperturbed" Liouville operator make possible the isolation 
of the screening effects from a more complete theory. 

The theory of time-dependent correlation functions has been studied by 
a variety of different analytical techniques in recent years. One of our aims 
has been to show that it is not necessary to be committed completely to a 
single technique. 

There is a great deal of flexibility in the choice of the function space 
defining the projection operator P. It is not necessary to use the scheme of 
Ref. 6, i.e., body additive functions. For example, there are well-defined 
function spaces in between the one- and two-body additive spaces, such as the 
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A, B, and C sectors of Ref. 7. Another example is a modification of the one- 
body additive space so that the kinetic energy density is replaced by the total 
energy density. Bergeron (18) and the author have shown that this choice makes 
possible a lucid discussion of the hydrodynamic limit. (19~ A similar modifi- 
cation of the two-body additive theory permits one to give an extended 
microscopic mode-mode coupling theory along the lines pioneered in Ref. 4. 
The utility of interpolatory projection operators is apparent, since a very 
large function space leads to intractable equations which must, in any case, 
be further analyzed. 

In the present paper we have studied only one aspect of what can be done 
to approximate the memory kernel that takes into account effects of the Q 
space orthogonal to the chosen P space. Of course, one always has available 
diagrammatic perturbation theory, cluster analysis, etc., to analyze the propa- 
gator contained in the memory operator. Our stress has not been on these 
techniques, which Usually involve analysis in terms of some small parameter. 
Instead, using the functional formulation, we have shown that the freedom to 
choose the unperturbed Liouville operator Lo may be used to obtain signifi- 
cant results without much effort and without commitment to a small- 
parameter analysis. Of course, to complete the theory, one should continue 
with diagrammatic analysis of the effects of the perturbed operator L1 to 
find the magnitude of correction terms. 

This procedure makes possible a more unified theory of fluids and plas- 
mas in which most of the differences lie in the different equilibrium correlation 
functions. However, in any practical approximation there may well remain 
significant differences that require taking account of the dynamical effects of 
Lz. 
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